MATHEMATICS APPLICATIONS

MAWA Semester 2 (Units 3 & 4) Examination 2016

Calculator-free

Marking Key

© MAWA, 2016

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to
 anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing
 them how the work is marked but students are not to retain a copy of the paper or marking guide until the
 agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

• the end of week 1 of term 4, 2016

Page 1 © MAWA 2016

Section One: Calculator-free (51 Marks)

Question 1 (a)

_		
C. V	11 1+1	n
Sol	uu	C) I I

Time	Start 9 am	10 am	11 am	noon
Luca	20	31	42	53
Mila	30	38	46	54

Marking key/mathematical behaviours	Marks
accurately completes pattern for Luca	1
accurately completes pattern for Mila	1

Question 1 (b)

Sol	

$$L_0 = 20, L_{n+1} = L_n + 11$$

$L_0=20,L_{n+1}=L_n+11$		
Marking key/mathematical behaviours	Marks	
identifies initial term	1	
identifies recurrence relation	1	

Question 1 (c)

Ruestion i (c)	
Solution	
$M_n = 22 + 8n$	
1 ¹	Marko
Marking key/mathematical behaviours	Marks
identifies correct "gradient"	1
expresses rules correctly in linear format	1

Question 1 (d) Solution

$M_n = 22 + 8n = 22 + 8 \times 12 = 118$			
Marking key/mathematical behaviours	Marks		
determines correct expression using rule identified	1		

© MAWA 2016 Page 2

MATHEMATICS APPLICATIONS SEMESTER 2 (UNITS 3 & 4) EXAMINATION MARKING KEY

Question 2 (a)

Sol	ution
OUI	ulion

	Monday	Tuesday	Wednesday
Jean	3	5	2
Ray	2	4	3
Mario	4	5	1

Marking key/mathematical behaviours	Marks
creates table to represent assignment data	1

Question 2 (b)

Solution

M T W $\begin{bmatrix} 3 & 5 & 2 \end{bmatrix}$

 $\begin{array}{c|cccc}
Jean & 3 & 5 & 2 \\
Ray & 2 & 4 & 3
\end{array}$

Mario $\begin{bmatrix} 4 & 5 & 1 \end{bmatrix}$

Marking key/mathematical behaviours	
 creates labelled matrix to represent assignment data 	1

Question 2 (c)

Solution

Jean for	Tuesday, Ray for Wednesday and Mario for Monday [12 hours]	
Marking k	key/mathematical behaviours	Marks
• d	letermines optimum assignment by inspection	1

Question 2 (d)

Solution

Every number was subtracted from 7

Lvery	idiliber was subtracted from /	
Marking	g key/mathematical behaviours	Marks
•	identifies calculation used	1

Question 2 (e)

Solution

In each row the smallest number was subtracted from each number in the row

Marking key/mathematical behaviours		Marks
	identifies calculation used	1

Question 2 (f)

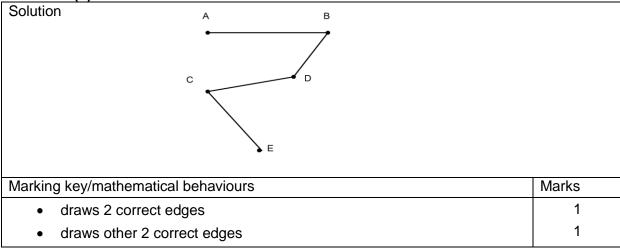
Solution

Where the optimum allocation is to be located. The intersection of the person and the day represents the solution

Marking key/mathematical behaviours	
interprets process in use of Hungarian algorithm	1

Question 2 (g)

_				
So	lı ı	tı	\sim	n
OU	ıu	u	v	


Ned on Friday, Mary on Monday, Sue on Tuesday, Eva on Wednesday, Jon on Thursday OR Ned on Friday, Mary on Monday, Sue on Tuesday, Eva on Thursday, Jon on Wednesday 31 hours

or modic	
Marking key/mathematical behaviours	Marks
determines optimum assignment	1
describes first solution	1 1
describes second solution	1

Question 3 (a)

zaconon o (a)	
Solution	
Edges in minimum spanning tree: AB = 11m BD = 12m DC = 10m CE = 41 metres needed	8m
Marking key/mathematical behaviours	Marks
determines 2 correct sections	1
determines 2 more correct connections	1
determines total minimum	1

Question 3 (b)

Question 3 (c)

Solution	
Network drawn is a connected graph with all edges different, each vertex visited	only once
Marking key/mathematical behaviours	Marks
identifies 2 conditions	1
identifies 3 rd condition	1

Page **4** © MAWA 2016

Question 4 (a)

Solution	
\$6000	
Marking key/mathematical behaviours	Marks
reads investment graph	1

Question 4 (b)

Solution		
\$6850		
Marking key/mathematical behaviours	Ma	arks
reads investment graph		1

Question 4 (c)

Solution	
monthly	
Marking key/mathematical behaviours	Marks
 reads investment graph 	1

Question 4 (d)

aconon + (u)	
Solution	
D (000 D D (1 - 0.045 - 10)	
$P_1 = 6000, P_{n+1} = P_n \times (1 + 0.045 \div 12)$	
Marking key/mathematical behaviours	Marks
identifies first term (or any other)	1
determines correct interest rate	1
identifies recurrence relation	1

Question 4 (e)

gassien (6)	
Solution	
(i) exponential	
(ii) The growth is a rate not a fixed amount	
(iii) The increasing growth is too small to be noticed on a graph with a very smal	l scale.
Marking key/mathematical behaviours	Marks
identifies type of relationship	1
explains lack of constant growth	1
identifies small amount of growth	1

Page **5** © MAWA 2016

MATHEMATICS APPLICATIONS SEMESTER 2 (UNITS 3 & 4) EXAMINATION MARKING KEY

Question 5 (a)

Solution	
4	
Marking key/mathematical behaviours	Marks
reads time series graph	1

Question 5 (b)

Solution	
700	
Marking key/mathematical behaviours	Marks
reads time series graph	1

Question 5 (c)

gaestion o (o)	
Solution	
(i) 900	
(ii) July 2011 to October 2011	
Marking key/mathematical behaviours	Marks
 reads pattern in time series graph 	1
interprets scale on horizontal axis	1

Question 5 (d)

Solution	
July 2009	
Marking key/mathematical behaviours	Marks
interprets data point on time series graph	1

Question 5 (e)

Solution	
Removing the outlier allows the calculation to be more typical of what normally or	ccurs
Marking key/mathematical behaviours	Marks
explains outlier's effect on calculations	1

Question 5 (f)

Solution	
The owners may have been away in January of that particular year	
Marking key/mathematical behaviours	Marks
links percentage to drop in consumption	1

Page **6** © MAWA 2016

Question 5 (g)

Solution	
Divide the consumption for the January by the average for each season of that ye	ear
Marking key/mathematical behaviours	Marks
describes method of calculation	1

Question 5 (h)

Solution	
April	
Has the lowest seasonal index AND it is the lowest point on the graph in each cy	ycle
Marking key/mathematical behaviours	Marks
identifies period for minimum consumption	1
gives reason to justify choice	1
gives second reason to justify choice	1

Question 6 (a)

Solution	
The repayments are less than the interest charged	
Marking key/mathematical behaviours	Marks
explains increasing loan value	1

Question 6 (b)

Solution	
\$2000	
Marking key/mathematical behaviours	Marks
reads investment graph	1

Question 6 (c)

Change to feature of the loan	Letter	
An increased amount is borrowed	D	
An increase in the rate at which interest is charged on the loan	В	
An increase in the size of the repayments	А	
An increase in the frequency of compounding	С	
An increase in the time taken to pay off the loan	D, B	
An increase in the overall amount paid back	D, B	
Marking key/mathematical behaviours		Marks
 selects graphs showing each of the 6 features described 		6

Page **7** © MAWA 2016